Answer Sheet No	
Sig. of Invigilator.	

2 13

D.

MATHEMATICS HSSC-I

SECTION - A (Marks 20)

Time allowed: 25 Minutes

NOTE:- Section—A is compulsory and comprises pages 1–2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

$\begin{pmatrix} 1 & -3 \\ 2 & -1 \end{pmatrix}$				$2(1+i)$ $(x \cap y)^{c}$	D.	-1 $2(1-i)$ None of these
$ \begin{array}{c} -is \\ 1+i \\ $	B. $C = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$	$1-i$ $X \cup Y$ then $X = $	C.		D.	2(1-i)
$1+i$ $(-y^{C}) = \frac{1}{x}$ $x \cap y$ $\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} x$ $\begin{pmatrix} 1 & -3 \\ 2 & -1 \end{pmatrix}$	B. $G = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$	$x \cup y$ then $X = $	C.			2(1-i) None of these
$(y^{C}) = \qquad \qquad$	B. $C = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$	$x \cup y$ then $X = $	C.			
$(y^{C}) = \qquad \qquad$	B. $C = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$	then X=		(<i>x</i> ∩ <i>y</i>) ^c	D.	None of these
$\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} X$ $\begin{pmatrix} 1 & -3 \\ 2 & -1 \end{pmatrix}$	$x = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$	then X=		$(x \cap y)^c$	D.	None of these
$\begin{pmatrix} 1 & -3 \\ 2 & -1 \end{pmatrix}$	[vl we			
	В.	1				
	B.	(4 2)		(2 2)		(0.0)
		2 -1	C.	(1 1)	D.	(2 3)
what value c	of m, the roots	of the equati	ion $(m+1)x^2$	+2(m+3)x+m-	+8=0 are e	equal?
$\frac{-1}{2}$	В.	$\frac{2}{3}$	C.	-1 3	D.	None of these
is the cube	roots of unity,	then a quadr	ratic equatio	n whose root	s are 2ω	and $2\omega^2$ is
$x^2 + 2x$	+4=0		В.	$x^2 - 2x + $	4 = 0	
$x^{2} + x +$	+ 4 = 0		D.	$x^{2} + 2x - 6$	4 = 0	
gree of P(x)	=3 and degre	e of Q(x)=4, the	then $\frac{P(x)}{Q(x)}$ w	ill be	_	
Proper F	Rational Fract	ion		B. Im	proper Rat	tional Fraction
Polynom	nial			D. No	ne of these	е
o,c are in G.F	P and a>0,b>0	0,c>0, then th	ne reciproca	ls of a,b,c forr	m	
A.P	В.	G.P	C.	H.P	D.	None of these
$\frac{1}{b}$, $\frac{1}{c}$ are in A	.P then the co	ommon differe	ence is			
a-c	В.	2ac a – c	C.	$\frac{a+c}{2ac}$	D.	2ac a + c
ī	A.P $\frac{1}{b}, \frac{1}{c} \text{ are in A}$ $\frac{a-c}{2ac}$	A.P B. $\frac{1}{b} \cdot \frac{1}{c} \text{ are in A.P then the co}$ $\frac{a - c}{2ac} \qquad \text{B.}$ d is drawn from a pack of	A.P B. G.P $\frac{1}{b}, \frac{1}{c}$ are in A.P then the common difference $\frac{a-c}{2ac}$ B. $\frac{2ac}{a-c}$ d is drawn from a pack of 52 cards at	A.P B. G.P C. $\frac{1}{b}, \frac{1}{c}$ are in A.P then the common difference is $\frac{a-c}{2ac}$ B. $\frac{2ac}{a-c}$ C. d is drawn from a pack of 52 cards at random. When	A.P B. G.P C. H.P $\frac{1}{b}, \frac{1}{c}$ are in A.P then the common difference is $\frac{a-c}{2ac}$ B. $\frac{2ac}{a-c}$ C. $\frac{a+c}{2ac}$	$\frac{1}{b}$, $\frac{1}{c}$ are in A.P then the common difference is $\frac{a-c}{2ac}$ B. $\frac{2ac}{a-c}$ C. $\frac{a+c}{2ac}$ D. d is drawn from a pack of 52 cards at random. What is the probability that

C.

В.

13

DO NOT WRITE ANYTHING HERE

(xi)	111011	induio torrito irr	ino oxpo	ension of $\left(\frac{x}{2} + \frac{2}{x^2}\right)$				
	A.	5 th term	В.	7 th term	C.	8 th term	D.	6 th term
(xii)	Circu	lar measure of	the angle	e between the ha	inds of a	watch at a 4'O c	lock is	93 11121
	A.	$\frac{\pi}{6}$ radians	В.	$\frac{2\pi}{3}$ radians	C.	$\frac{3\pi}{4}$ radians	D.	$\frac{\pi}{3}$ radians
(xiii)	If tan	$\theta = \frac{2}{5}$ and $0 < \theta <$	$\frac{\pi}{2}$ then $\frac{4}{3}$	$\frac{\cos\theta + 3\sin\theta}{\cos\theta - \sin\theta} = \underline{\hspace{1cm}}$				
	A.	14 3	B.	26 3	C.	13 7	D.	None of thes
(xiv)	The a	ingles 90°±θ,18	30°±θ, 27	'0°±θ,360°±θ are	the	angle.		
	A.	Composite	В.	Half	C.	Quadrantal	D.	Allied
(xv)	The p	period of $3\cos\frac{x}{5}$	is					
	A.	5π	В.	2π	C.	10π	D.	6π
(xvi)	The in	n-radius r of a tr	riangle is	given by				
	Α.	sΔ	В.	$\frac{\Delta}{s}$	C.	$\frac{s}{\Delta}$	D.	None of the
(xvii)	sin	$\cos^{-1}\frac{\sqrt{3}}{2}$ =						
	(2)						
	A	0	В.	1	C	1 6	D.	$\sqrt{3}$
	1			2		6		2
(xviii)	If α	and eta are the	roots of	the equation x ²	-(p-1)x	+ c = 0 then (1+a)	z)(1+β) =	
	A	1-c	В.	c-2	C.	-с	D.	None of thes
(xix)	Which	n term of 64,60,						at.
	Α.	16 th	B.	17 th	C.	14 th	D.	15 th
(xx)	Multip	olicative inverse	of 1-2	i is=				
	Α.	$\frac{1-2i}{5}$	В.	$\frac{1+2i}{5}$	C.	$\frac{1+2i}{4}$	D.	None of thes
For Ex	amine	r's use only:			->-	<u> </u>		
					Total	Marks:		20
						s Obtained:		

Page 2 of 2(Math)

MATHEMATICS HSSC-I

30

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE:- Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Q. 2 Attempt any TEN parts. All parts carry equal marks.

 $(10 \times 4 = 40)$

(i) Simplify
$$\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3$$

(ii) Without expansion verify that
$$\begin{pmatrix}
1 & a^2 & \frac{a}{bc} \\
1 & b^2 & \frac{b}{ca} \\
1 & c^2 & \frac{c}{ab}
\end{pmatrix} = 0$$

- (iii) Find the condition that $\frac{a}{x-a} + \frac{b}{x-b} = 5$ may have roots equal in magnitude but opposite in signs.
- (iv) Find the sum of 20 terms of the series whose rth term is 3r+1.
- (v) Resolve into Partial Fraction $\frac{9x-7}{(x^2+1)(x+3)}$
- (vi) Show that ${}^{16}C_{11} + {}^{16}C_{10} = {}^{17}C_{11}$
- (vii) Find the term independent of x in the expansion of $\left(\sqrt{x} + \frac{1}{2x^2}\right)^{10}$
- (viii) If $\cot \theta = \frac{m^2 1}{2m}$ and $0 < \theta < \frac{\pi}{2}$ find the value of remaining trigonometric ratios.
- (ix) If $\sin \alpha = \frac{12}{13}$, then find the values of $\sin 2\alpha$ and $\cos 2\alpha$, where $0 < \alpha < \frac{\pi}{2}$
- Draw the graph of $y = \tan x$, $x \in [-\pi, \pi]$ Graph paper should be given to the candidates.
- (xi) Solve the triangle ABC if $\alpha = 35^{\circ} 17'$, $\beta = 45^{\circ} 13'$, b = 421
- (xii) Show that $\cos^{-1}(-x) = \pi \cos^{-1} x$
- (xiii) Solve 2x y = 4 and $2x^2 4xy y^2 = 6$
- (xiv) Show that the statement $\neg q \land (p \rightarrow q) \rightarrow \neg q$ is a tautology

SECTION - C (Marks 40)

Note:- Attempt any FIVE questions. All questions carry equal marks.

 $(5 \times 8 = 40)$

- **Q. 3** Prove that $\sqrt{3}$ is an irrational number.
- **Q. 4** Find the value of λ for which the system has non-trivial solutions. Also find solution for the value of λ

$$x + y + z = 0$$

$$2x + y - \lambda z = 0$$

$$x + 2y - 2z = 0$$

- Q. 5 Show that roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are real and will be equal only if a=b=c
- Q. 6 If m and n are nearly equal show, that $\left(\frac{5m-2n}{3n}\right)^{\frac{1}{3}} \approx \frac{m}{m+2n} + \frac{n+m}{3n}$
- **Q.7** If α, β, γ are the angles of a triangle ABC, then show that $\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2}$ $\cot \frac{\beta}{2}$ $\cot \frac{\gamma}{2}$
- **Q. 8** Prove that $r = \frac{\Delta}{s}$ with usual notation. Also show that $r_1 = s \tan \frac{\alpha}{2}$
- **Q. 9** Solve the equation $\sin^2 x + \cos x = 1$

Answer Sheet No	
Sig of Invigilator	

MATHEMATICS HSSC-I

SECTION - A (Marks 20)

Time allowed: 25 Minute	Time	al	lowed	: 25	Minu	tes
-------------------------	------	----	-------	------	------	-----

NOTE:- Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the

Circi	e the co	rrect option i.e.	A/B/	C / D. Each part	carries	one mark.		
(i)	$i^{20} = $							
	Α.	3	B.	2	C.	1	D.	0
(ii)	$\frac{2}{1+i}$	=						
	A.	1+i	В.	1-i	C.	2(1+i)	D.	2(1-i)
(iii)	If A h	as 3 elements, B	has 5	elements then ma	aximum	numbers of elem	ents in	A ∪ B is
	A.	5	B.	3	C.	2	D.	8
(iv)	If A =	$=$ $\begin{pmatrix} 1 & -1 \\ a & b \end{pmatrix}$ and	$A^2 = I$	then a and b are	15			
	A.	a = 0 , b = -1	B.	a = 1, b = 0	C.	a = 2, b = 1	D.	a = 3, b = 0
(v)	For w	hat value of k, th	e sum	of roots of the equ	uation x	$x^2 + kx + 4 = 0$ i	s equal	to the product of its
	A.	±1		±4	C.			-4
(vi)	If the	roots of $x^2 - px$	$\zeta + q =$	0 differ by unity t	hen p^2			
	Α.	0	В.	1		2		-1
(vii)	The ra	ational fraction	$\frac{P(x)}{Q(x)}$	where $Q(x) \neq 0$, is Prop	per Rational Frac	ction if_	
(vii)		ational fraction $DegP(x) = 0$				per Rational Frac		
(vii)	Α.		DegQ	(x)	В.	DegP(x) <	DegQ	
(viii)	A. C.	DegP(x) = DegP(x) > DegP	DegQ DegQ	(x) (x)	B. D.	DegP(x) < None of these	DegQ	
	A. C.	DegP(x) = DegP(x) > DegP	DegQ DegQ	(x) (x) $b, c + a, b + c \in A$	B. D. are in	DegP(x) < None of these	DegQ((x)
	A. C. If a ² ,b	$DegP(x) = R$ $DegP(x) > R$ P^2 , C^2 are in A.P., the	DegQi DegQi nen a + B.	(x) (x) $b, c + a, b + c \in A$	B. D. are in	DegP(x) < None of these	DegQ(
(viii)	A. C. If a ² ,b	$DegP(x) = R$ $DegP(x) > R$ P^2 , C^2 are in A.P., the	DegQi DegQi nen a + B.	(x) (x) $b, c + a, b + c \in A$ $G.P$	B. D. are in	DegP(x) < None of these	DegQ((x)
(viii)	A. C. If a^2 , b. A. If $\frac{1}{k}$,	$DegP(x) = R$ $DegP(x) > R$ $P^{2}, c^{2} \text{ are in A.P., the A.P.}$ $\frac{1}{2k+1}, \frac{1}{4k-1}$	DegQi DegQi nen a + B. B. B.	(x) (x) $b,c+a,b+c$ and (x)	B. D. C. C. e of k is_	DegP(x) < None of these	DegQ(None of these
(viii)	A. C. If a^2 , b. A. If $\frac{1}{k}$,	$DegP(x) = \frac{1}{2k+1}$ $\frac{1}{2k+1}$ $\frac{1}{4k-1}$ 3 is rolled, what is	DegQinen a + B. Bare in H B. the pro	(x) (x) b,c+a,b+c a G.P P, then the value 2 bability of getting	B. D. are in C. c of k is_ C. a numb	DegP(x) < None of these	DegQ(None of these 4 eater than 2?
(viii)	A. C. If a^2 , b. A. If $\frac{1}{k}$, A. A die	$DegP(x) = \frac{1}{2k+1}$ $\frac{1}{2k+1}$ $\frac{1}{4k-1}$ 3 is rolled, what is	DegQinen a + B. B. B. B. the pro	(x) (x)	B. D. are in C. c of k is_ C. a numb	DegP(x) < None of these H.P 1 ner which is even	DegQ(None of these 4 eater than 2?

DO NOT WRITE ANYTHING HERE

(xii) $\frac{\pi}{180}$ radian B. $\frac{180}{\pi}$ radian C. $\frac{1}{180\pi}$ radian D. 180π radian If $\cos \theta - \frac{\sqrt{3}}{2}$ and terminal side of the angle is not in 3rd quadrant then $\sin \theta$ is_ D. None of these A reference angle θ is always_ (xiv) A. $0 < \theta < \frac{\pi}{2}$ B. $\frac{\pi}{2} < \theta < \pi$ C. $0 < \theta < \pi$ The period of $5\cos\frac{x}{3}$ is____ (XV) A. 3π B. 2π The in-radius r of a triangle is given by_ (xvi) 2sinr $\cos(2\sin^{-1}x) = \underline{\hspace{1cm}}$ A. $1-2x^2$ B. $1+2x^2$ If the roots of $ax^2 + bx + c = 0$ are real and unequal then_ A. $b^2 - 4ac < 0$ B. $b^2 - 4ac > 0$ $b^2 - 4ab = 0$ $2 + (1 - i) + \left(\frac{1}{i}\right) + \dots$ is in___ В. G.P If $z_1 = 1 + 2i$, $z_2 = 2 + i$, then $(z_1 z_2)$ is_

For Examiner's use only:

Total Marks:

20

Marks Obtained:

---- 1HA 1211 (ON) ----

Page 2 of 2(Math)

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Attempt any TEN parts. All parts carry equal marks. Q. 2

 $(10 \times 4 = 40)$

(i) If
$$z_1=2+i$$
, $z_2=3-2i$, $z_3=1+3i$ then express $\frac{\overline{z_1}\cdot\overline{z_3}}{z_2}$ in the form of $a+bi$

(ii) Find the matrix A if
$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} A = \begin{pmatrix} 0 & -3 & 8 \\ 3 & 3 & -7 \end{pmatrix}$$

(iii) If
$$\alpha$$
, β are the roots of $3x^2 - 2x + 4 = 0$, then find the value of $\alpha^3 + \beta^3$

(v) Resolve
$$\frac{x^2+x-1}{(x+2)^3}$$
 into partial fraction.
 (vi) Show that $^{15}C_{11}+^{15}C_{10}=^{16}C_{11}$

(vi) Show that
$${}^{15}C_{11} + {}^{15}C_{10} = {}^{16}C_{11}$$

(vii) Find the sixth term from the end in the expansion of
$$\left(\frac{3}{2}x - \frac{1}{3x}\right)^{11}$$

(viii) Prove that
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$$
; where $\theta \neq (2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$

(ix) Express
$$5\sin\theta - 4\cos\theta$$
 in the form $r\sin(\theta + \phi)$ where $0 < \theta < \frac{\pi}{2}$, $0 < \phi < \frac{\pi}{2}$

(xi) Solve the triangle ABC if
$$\gamma = 53^{\circ}$$
, $\alpha = 47^{\circ}$, $b = 125$

(xii) Show that
$$\sin^{-1}(-x) = -\sin^{-1}x$$

(xiii) Solve
$$x + y = 7$$
 and $x^2 - xy + y^2 = 13$

(xiv) Construct the truth table for
$$\sim (p \rightarrow q) \leftrightarrow (p \land \sim q)$$

SECTION - C (Marks 40)

Attempt any FIVE questions. All questions carry equal marks. Note:-

 $(5 \times 8 = 40)$

Prove that $\sqrt{3}$ is an irrational number. Q. 3

Q. 4 Find the inverse of the matrix
$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \\ 1 & 0 & 2 \end{pmatrix}$$

Q. 5 Solve the equation
$$\sqrt{3x^2 - 5x + 2} + \sqrt{6x^2 - 11x + 5} = \sqrt{5x^2 - 9x + 4}$$

Q. 6 If
$$y = \frac{2}{5} + \frac{1.3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{3!} \left(\frac{2}{5}\right)^3 + \dots$$
 then prove that $y^2 + 2y - 4 = 0$

Q. 7 Let
$$\alpha$$
 and β be any two angles (real numbers), then $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$

Q. 8 Prove that
$$abc(\sin \alpha + \sin \beta + \sin \gamma) = 4\Delta s$$

Q. 9 Find the solution set of
$$\cos ecx = \sqrt{3} + \cot x$$