Version No.					ROLL NUMBER								WERMEDIATE AND SEC.	\
													The Board of the B	NARY ED
0	0	0	0		0	0	0	0	0	0	0			UCATA
1	1	1	1		1	1	1	1	1	1	1		/SLAMABAD	,
2	2	2	2		2	2	2	2	2	2	2			
3	3	3	3		3	3	3	3	3	3	3	Ans	wer Sheet No	
4	4	4	4		4	4	4	4	4	4	4			
5	5	5	5		(5)	5	(5)	5	(5)	(5)	(5)			
6	6	6	6		6	6	6	6	6	6	6	Sigr	n. of Candidate	
7	7	7	7		7	7	7	7	7	7	7			
8	8	8	8		8	8	8	8	8	8	8	Sigr	n. of Invigilator	
9	9	9	9		9	9	9	9	9	9	9	J	.	
					CI	TTON	ATC	TD.	57 TI	וממי	~ т	and a	7.4)	
					CI						∪−I arks	(2 nd §	Set)	
										,	Minu			
					•	-							swered on this pag	
over t Q.1				_				_			_		owed. Do not use les one mark.	lead pencil.
V. -	1.							_			_	1 30g (
	1.		A.	N ₂ (CI OI	mon	cuic	5 arc)	B.	NO	\circ
			C.	NC	2					Č		D.	N_2O_3	Ö
	2.		The 1	argest	t bou	nd aı	ngle i	is pre	esent	in:				
			A.	СН			υ	1		\subset)	B.	SCl_2	\bigcirc
			C.	NH	[3					\subset)	D.	BCl ₃	\bigcirc
	3. The difference in angular momentum of electron which jumps from 3rd orbit to 6th													
			orbit	of hy	_	en at	om w	ill b	e:				(h)	
			A.	3 (\subset)	B.	$3\left(\frac{h}{\pi}\right)$	\bigcirc
			C.	6	$\left(\frac{h}{2\pi}\right)$					\subset)	D.	$6\left(\frac{h}{\pi}\right)$	\bigcirc
	4.		Whic	h one	of th	ne fo	llowi	na ce	alte ti	irne i	red li	tmue h	olue upon hydrolys	ic?
	т.		A.		SO ₄	10.	110 W 1	ng se	iiis ii)	B.	NaCl)
			C.	Na	2 CO $_3$					Č		D.	NH ₄ Cl	Ö
	5.		Ident	ify the	e uni	t of r	ate c	onsta	ant (F	() fo	r the	given	reaction:	
			2A+I	3 -				→		oduct		when	Rate= $K[A][I$	B]
			A.	s ⁻¹	3 -	ı_1 _	1			\mathcal{C}		B.	mol dm ⁻³ s ⁻¹	\bigcirc
			C.	dm	mo.	l ⁻¹ s -	1)	D.	$dm^6 mol^{-2} s^{-1}$	\bigcirc
	6.							er Se	ries o	of Bo	hr's l	Hydro	gen spectrum is du	e to the
			transi A.	ition o			n: ll to i	1st ch	الم					
			A. B.				11 to 2						\bigcirc	
			C.				ll to						0	
			D.	Fro	m 5 ^{ti}	h she	ll to 2	2 nd sł	nell				\bigcirc	

/.	netic quantum numbei	rs (m)								
	will b A.	e: 3	\bigcirc	R	6	\bigcirc				
	C.	9	\bigcirc	B. D.	6 12	\bigcirc				
0			~~							
8.	A gas A.	x diffuses four times faster th	ian SO ₂	_		will be:				
		2 g/m	\bigcirc		•	\bigcirc				
	C.	16 g/m	\bigcirc	D.	64 g/m	\bigcirc				
9.	A rea	al gas that obeys Vander Ves like an ideal gas when	Wall's	equation	$(p + \frac{an^2}{v^2} + (v - nb))$)=nRT)				
	A. B.	'a' is large & 'b' is small			0					
		'a' is small & 'b' is large								
	C. D.	'a' & 'b' are large 'a' & 'b' are small								
	<i>υ</i> .	a & o are sman			O					
10.	the fa	is a crystalline solid which ha				la ⁺ ion at				
	A.	Two unit cells	\bigcirc		Four unit cells	\bigcirc				
	C.	Six unit cell	\bigcirc	D.	Eight unit cells	\bigcirc				
11.	The tr	cansition temperature of tin gr	ey and t	in white	e is:					
	A.	13.2°C	\bigcirc	B.	18°C	\bigcirc				
	C.	95.5°C	\bigcirc	D.	128.5°C	\bigcirc				
12.	The v A.	apor pressure of a liquid depe Nature of liquid	nds upo	on the fo	llowing, EXCEPT : Temperature					
	C.	Inter molecular forces	\bigcirc	D.	Amount of liquid	\bigcirc				
13.	The standard electrode potential of different elements are measured with the help of Standard Hydrogen Electrode (SHE). The standard conditions at which SHE is operated are: A. 2.00M HCl solution, 1 atm H ₂ at 0 K. B. 1.00M HCl solution, 1 atm H ₂ at 298 K. C. 1.00M HCl solution, 2 atm H ₂ at 0 K. D. 1.00M HCl solution, 1 atm H ₂ at 273 K.									
14.	20. gr	ams of glucose dissolved in	water	to prop	are a colution of 10	0/2 vv / v				
14.	_	entration. The volume of the so			are a solution of to	/0 W / V				
	A.	100 cm^3		В.	$200 \mathrm{cm}^3$	\bigcirc				
	C.	2000 cm^3	Ŏ	D.	2500cm^3	Ŏ				
15.		fer solution resists the change or base. Which one of the follo Mixture of NH ₄ Cl _(aq) and N	owing is	an exar	adding small amount	_				
	B.	Mixture of NH ₄ Cl _(aq) and N		aq)						
	Б. С.	· •		.Cl.						
	C. D.	Mixture of CH ₃ COONa _(aq) a Mixture of NH ₄ Cl _(aq) and N			\bigcirc					
		· P	`	v						
16.		halpy of neutralization of the self-beth the enthalpy change of re- KOH _(aq) + HCl _(aq) \rightarrow	action (b)?	a) is -57.3 k J / mol. W	/hat				
	(b)	$H_2SO_{4(aq)} \ + \ 2KOH_{(aq)} \rightarrow$	K_2SO_4	$_{aq}$)+2 H_2 ((l) C	_				
	A.	-28.65 k J	\bigcirc	B.	-114.6 k J	\bigcirc				
	C.	-171.9 k J	\bigcirc	D.	-229.2 k J					

17.	The unit of Kc for the following reversible reaction will be:										
	$3Fe_{(s)}$	$+4H_2O_{(g)}$	$Fe_3O_{4(s)} + 4H_{2(g)}$	Which	one is the unit of Kc?						
	A.	No unit	\bigcirc	B.	mole ² dm ⁻³	\bigcirc					
	C.	$mole^{-2}dm^{+6}$	\bigcirc	D.	$mol^{-1}dm^3$	\bigcirc					

Federal Board HSSC-I Examination Chemistry Model Question Paper (Curriculum 2006)

Time allowed: 2.35 hours Total Marks: 68

Note: Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 42)

Q.2 Attempt any FOURTEEN parts from the following. All parts carry equal marks.

 $(14 \times 3 = 42)$

- i. Justify the following:
 - a. One mole of CO₂, CH₄ & H₂O has different masses but have same number of molecules.
 - b. Energy of 3d sub shell is greater than 4s.
- ii. For the following reaction:

 $\begin{array}{c} Ca(OH)_{2(aq)} + H_2SO_{4(aq)} & \hspace{2cm} & \hspace{2cm} 2 \; H_2O_{(l)} + \; CaSO_{4(s)} \\ Calculate \;\; the \;\; mass \;\; of \;\; calcium \;\; hydroxide \;\; needed \;\; to \;\; produce \;\; 680g \;\; of \;\; calcium \;\; sulphate? \\ & (Ca = 40, \, O = 16, \, S = 32, \, H = 1 \;\; g/mol) \\ \end{array}$

- iii. Se²⁻ selenide and SO_3^{2-} Sulphite ions react spontaneously $2Se^{2-} + 2SO_3^{2-} + 3H_2O \longrightarrow 2Se + 6OH^- + S_2O_3$ E^o cell = 0.35v If E_o Sulphite is -0.57 v, calculate E^o for selenium.
- iv. What is metallic bond? Describe electron sea theory.
- v. How Mosley used x-rays Spectrum to predict the atomic number of elements? Give one use of x-rays in medical field and chemistry.
- vi. The species H₂O, NH₃ and CH₄ have bond angles of 104.5°, 107.5°, 109.5° respectively. Prove by VSEPR theory, by drawing their structures.
- vii. Briefly describe the shape of subshells when the values of l are 0, 1 & 2.
- viii. Explain the shape and polarity of H₂O on the basis of dipole moment.
- ix. State Joule Thomson Effect and give one application.
- x. Boiling point of HF (19.5°C) is low as compared to H₂O (100°C) although the electronegativity of Fluorine is greater than oxygen. Explain.
- xi. Briefly describe the factors on which London forces depend?
- xii. Give three properties of covalent crystals.
- xiii. How can you measure the depression in freezing point using Beckman's Freezing point apparatus.
- xiv. What is the oxidation numbers of the relevant elements on each side of the following equation, state which atom is oxidized and which is reduced? Show your working. 2FeCl₃ + SO₂ + 2H₂O → 2FeCl₂ + H₂SO₄ + 2HCl

- xv. Standard enthalpy change of combustion of a substance is energy change when one mole of a substance is completely burnt in oxygen at standard conditions i.e 25 $^{\rm o}$ C and 1 atm pressure. Using following standard enthalpy changes of combustion of propanol ΔHCO_2 = -293 KJ/ mol ΔHH_2O = -286 KJ/ mol ΔHcC_3H_7OH = -1560 KJ/ mol Calculate enthalpy change of formation of propanol.
- xvi. The dissociation constant of an acid is a measure of its strength. Derive an expression for the dissociation constant of an acid "CH₃COOH".
- xvii. In the equilibrium $PCl_{5}(g) = PCl_{3}(g) + Cl_{2}(g)$ $\Delta H = 90KJ/mol$ predict the effect on the position of equilibrium if temperature is increased and
- xviii. Values of equilibrium constants can be calculated from measured values of concentrations or partial pressures. Write relationship between Kp and Kc in the following reactions?
 - (a) $COCl_{2(g)}$ \rightleftharpoons $CO_{(g)} + Cl_{2}(g)$
 - (b) $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$

pressure is decreased.

- xix. A solution containing 0.13M potassium acetate and 0.07M acetic acid. Calculate the pH of buffer solution. The value of ionization constant for acid is 1.81×10^{-5} .
- xx. Calculate the molarity of 4.6% w/w solution of NaOH.

SECTION – C (Marks 26)

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 13 = 26)$

- Q.3 a. Derive energies expression for ${}_{2}^{4}He^{+1}$ according to Bohr's atomic model. (7)
 - b. 40dm³ HCl (g) at STP reacts with 50g Zn which is placed in water to form ZnCl₂ and H₂. Calculate the mass of H₂ produced and unreacted reactant left.


$$(Zn = 65, Cl = 35.5, H = 1)$$

 $Zn + 2HCl \longrightarrow ZnCl_2 + H_2$

$$(3+3)$$

- Q.4 a. Explain and draw stepwise Born Haber Cycle for measurement of $\Delta H_{lattice}$ for potassium chloride (KCl) by using supposed values according to the steps. (5+3)
 - b. Explain the potential energy diagram for the given reaction and propose reaction mechanism (3+2)

$$2H_2+ 2NO \longrightarrow 2H_2O+ N_2$$

$$Rate = K[H_2][NO]^2$$

Reaction Path ——

Define the following terms with a suitable example:
i. Isomorphism
ii. Polymorphism
iii. Anisotropy Q.5 (2+2+2)a.

Summarize and illustrate the elevation of boiling point using graph. (4+3)b.

* * * * *

CHEMISTRY HSSC-I (2nd Set) Student Learning Outcomes Alignment Chart

SECTION A

Q.1

- 1. Use the mole to convert among measurements of mass, volume and number of particles.
- 2. Determine the shapes of some molecules from the number of bonded pairs and lone pairs of electrons around the central atom.
- 3. Summarize Bohr's atomic theory.
- 4. Use the concept of hydrolysis to explain why aqueous solutions of some salts are acidic or basic.
- 5. Given the order with respect to each reactant. Write the rate law of the reaction.
- 6. Relate the discrete-line spectrum of hydrogen to energy levels of electrons in the hydrogen atom.
- 7. Distinguish among principal energy levels, energy sub levels, and atomic orbitals.
- 8. State and use Graham's Law of diffusion.
- 9. Distinguish between real and ideal gases.
- 10. Explain the significance of the unit cell to the shape of the crystal using NaCl as an example.
- 11. Define and explain molecular and metallic solids.
- 12. Explain physical properties of liquids such as evaporation, vapour pressure, boiling point, viscosity and surface tension.
- 13. Define cathode, anode, electrode potential and S.H.E. (Standard Hydrogen Electrode).
- 14. Express solution concentration in terms of mass percent, molality, molarity, parts per million, billion and trillion and mole fraction.
- 15. Define a buffer, and show with equations how a buffer system works.
- 16. Use experimental data to calculate enthalpy
- 17. Write the equilibrium expression for a given chemical reaction.

SECTION B

- **Q.2**
- i. Perform stochiometric calculation with balance equation using mole and particles.
- ii. Construct mole ratio from balance equation in stochiometric calculation.
- iii. Use activity series of metal to predict the product of single replacement reaction.
- iv. Define and explain molecular and metallic solids.
- v. Explain production properties of X rays.
- vi. Determine the shape of some molecules using orbital hybridization.
- vii. Describe the concept of orbitals.
- viii. Describe how knowledge of molecular polarity can be used to explain molecules.
- ix. Distinguish between real and ideal gasses.
- x. Use the concept of Hydrogen bonding to explain the properties of water.
- xi. Explain applications of dipole dipole force, Hydrogen bonding and London force.
- xii. Differentiate between ionic and covalent molecular and metallic crystal solids.
- xiii. Explain on a particle bases how the addition of the solute to the pure solvent.
- xiv. Determine oxidation number of and atom in substance.
- xv. Use the experimental data to calculate heat of reaction.
- xvi. Use the extent of ionization and dissociation constant.
- xvii. State Le-Chiliter principal. Explain concentration, pressure and temperature effect
- xviii. Relate the equilibrium expression in term of concentration and pressure.
- xix. Make buffer solution and explain how such solution maintain PH.
- xx. Express solution concentration in term of molality.

SECTION C

- **Q.3** a. Use Bohr atomic model for calculating radii of orbits.
 - b. Perform Stoichiometric calculation with balanced equation using moles.
- **Q.4** a. Apply Hesses law to construct simple energy cycle.
 - b. Give the potential energy diagram for the reaction. Discus reaction mechanism.
- **Q.5** a. Given the order with respect to each reactant write the rate law for the reaction.
 - b. Describe the physical and chemical properties of molecules.

CHEMISTRY HSSC-I (2nd Set)

TABLE OF SPECIFICATION

Subject: Chemistry			Paper: Model 2			Class\Level HSSC-I				Year 2021	-22		Code		
Topics/ Subtop ics	Stoichiom etry 1	Atomic structur e	Theories of covalent bonding	States of matter- Gases	States of matter- Liquids	matt Solid		Chemical Equilibri um	Acids Bases and	Chemic al kinetics	Solution s and colloids	Thermoc hemistry 11	Electro chemis try	Total marks for each	%age of cogniti
		2	3	4	5	6		7	salts 8	9	10		12	Assessmen t Objective	ve level
				Ana	lysis of Ques	tions o	of syllabus(contents) an		t objectives	<u> </u>		I	r objective	10,01
(Knowl edge based)				2ix(03)	1xii(01)		1x(01) 1xi(01) 2iv(03) 2xii(03) 5a(06)	1xvii(0 1) 2xviii(0 3)	1iv(01) 2xvi(03)		2xiii(03)		1xiii(01) 2xiv(03)	33	28.4%
(Under standin g based)	2i(03)	1iii(01) 1vi(01) 1vii(01) 2v(03) 3a(07) 2vii(03)	1ii(01) 2vi(03) 2viii(03)	1viii(01) 1ix(01)	2xi(03) 2x(03)			2xvii(0 3)	1xv(01)	1v(01) 4b(05)	5b(07)	1xvi(01) 4a(08)		60	51.7%
(Applic ation based)	1i(01) 2ii(03) 3b(06)								2xix(03)		1xiv(01) 2xx(03)	2xv(03)	2iii(03)	23	19.8%
Total marks for each Topic/S ubtopic	13	16	7	5	7		14	7	8	6	14	12	7	116	100%

KEY:

1(1)1

Question No (Part No.) Allocated Marks

Note: (i) The policy of FBISE for knowledge based questions, understanding based questions and application based questions is approximately as follows:

- a) 30% knowledge based.
- b) 50% understanding based.
- c) 20% application based.
- (ii) The total marks specified for each unit/content in the table of specification is only related to this model question paper.
- (iii) The level of difficulty of the paper is approximately as follows:
 - a) 40% easy
 - b) 40% moderate
 - c) 20% difficult