NOTIFICATION

In continuation of this office Notification No.0-1/FBISE/RESH/CC/SSC/605 dated 27 March 2012, revised Curriculum 2006 and model question paper in the subject of Chemistry for Class-X is forwarded for its implementation w.e.f. the academic session 2013-15. Accordingly the students of Class-X to be admitted in April 2013 shall be examined in accordance with revised curriculum and model question paper, in the SSC Part-II Annual Examination 2014 and onwards.

2. The textbook “An interactive approach to Chemistry 10” printed by National Book Foundation, Islamabad may be consulted for reference and supplementary material.

3. A copy of the same has been hoisted on the FBISE website www.fbise.edu.pk.

All heads of institutions affiliated with FBISE at SSC level

Copy to:
1. Director General, Federal Directorate of Education, G-9/4, Islamabad
2. Director Education, FGEI (C&G), Sir Syed Road, The Mall, Rawalpindi Cantt
3. Director Education (Schools/Colleges), PAF Rear Air HQs, Peshawar Cantt
4. Director Education, Directorate of Naval Educational Services, Naval HQ, Islamabad
5. Director, Army Public Schools and Colleges System Secretariat, GHQ, Rawalpindi
6. General Manager (Education), Fauji Foundation Head Office, Welfare Division, Chaklala, Rawalpindi
7. Director Education, OPF Head Office, F-5, Islamabad
8. The Secretary, National Book Foundation, G-8/4, Islamabad
9. All GSO-I
10. Incharge, Website FBISE, Islamabad
11. Incharge, FBISE Sub-Office, Gilgit
12. All Sectional Heads of FBISE, Islamabad
5. Biochemistry
 Introduction
 13.1 Carbohydrates
 13.1.1 Monosaccharides
 13.1.2 Oligosaccharides
 13.1.3 Polysaccharides
 13.1.4 Sources and Uses
 13.2 Proteins
 13.2.1 Amino Acids as Building Blocks of Proteins
 13.2.2 Sources and Uses
 13.3 Lipids
 13.3.1 Fatty Acids
 13.3.2 Sources and Uses
 13.4 Vitamins
 13.4.1 Types of Vitamins
 13.4.2 Importance of Vitamins

 Introduction
 14.1 Composition of Atmosphere
 14.2 Layers of Atmosphere
 14.2.1 Troposphere
 14.2.2 Stratosphere
 14.3 Pollutants
 14.3.1 Major Air Pollutants
 14.3.2 Sources of Air Pollutants
 14.4 Acid Rain and Its Effects
 14.5 Ozone Depletion and Its Effects

7. Environmental Chemistry II: Water
 Introduction
 15.1 Water
 15.1.1 Properties of Water
 15.1.2 Water as Solvent
 15.2 Soft and Hard Water
 15.2.1 Types of Hardness of Water
 15.2.2 Methods of Removing Hardness
 15.2.3 Disadvantages of Water Hardness
 15.3 Water Pollution
 15.3.1 Industrial Wastes
 15.3.2 Household Wastes
 15.3.3 Agricultural Waste
 15.4 Water Borne Diseases

8. Chemical Industries
 Introduction
 16.1 Basic Metallurgical Operations with Reference to Copper
 16.1.1 Concentration
 16.1.2 Extraction
 16.1.3 Electro-Refining
 16.2 Manufacture of Sodium Carbonate by Solvay’s Process
 16.2.1 Raw Materials
 16.2.2 Basic Reactions
 16.2.3 Flow Sheet Diagram
 16.3 Manufacture of Urea
 16.3.1 Raw Materials
 16.3.2 Reaction
 16.3.3 Flow Sheet Diagram
 16.4 Petroleum Industry
 16.4.1 Petroleum
 16.4.2 Origin of Petroleum
 16.4.3 Mining of Petroleum
 16.4.4 Important Fractions of Petroleum
CHEMISTRY
For Class-X

1. Chemical Equilibrium
 Introduction
 9.1 Reversible Reaction and Dynamic Equilibrium
 9.2 Law of Mass Action and Derivation of the Expression for the Equilibrium Constant
 9.3 Equilibrium Constant and Its Units
 9.4 Importance of Equilibrium Constant

2. Acids, Bases, and Salts
 Introduction
 10.1 Concepts of Acids and Bases
 10.1.1 Arrhenius Concept of Acids and Bases
 10.1.2 Bronsted Concept of Acids and Bases
 10.1.3 Lewis Concept of Acids and Bases
 10.2 pH Scale
 10.3 Salts
 10.3.1 Preparation
 10.3.2 Types of
 10.3.3 Uses of some Salts

3. Organic Chemistry
 Introduction
 11.1 Organic Compounds
 11.2 Sources of Organic Compounds
 11.2.1 Coal
 11.2.2 Petroleum
 11.2.3 Natural Gas
 11.2.4 Plants
 11.2.5 Synthesis in the Lab
 11.3 Uses of Organic Compounds
 11.4 Alkanes and Alkyl Radicals
 11.5 Functional Groups
 11.5.1 Functional Groups Containing Carbon, Hydrogen and Oxygen
 11.5.2 Functional Groups Containing Carbon, Hydrogen and Nitrogen
 11.5.3 Functional Groups Containing Carbon, Hydrogen and Halogens
 11.5.4 Double and Triple Bond

4. Hydrocarbons
 Introduction
 12.1 Alkanes
 12.1.1 Preparation
 12.1.1.1 Hydrogenation of Alkenes and Alkynes
 12.1.1.2 Reduction of Alkyl Halides
 12.1.2 Important Reactions
 12.1.2.1 Halogenation
 12.1.2.2 Combustion
 12.2 Alkenes
 12.2.1 Preparation
 12.2.1.1 Dehydration of Alcohols
 12.2.1.2 Dehydrohalogenation of Alkyl Halides
 12.2.2 Important Reactions
 12.2.2.1 Addition of Halogens
 12.2.2.2 Addition of Hydrogen Halides
 12.2.2.3 Oxidation with KMnO4
 12.3 Alkynes
 12.3.1 Preparation
 12.3.1.1 Dehalogenation of Adjacent Dihalides
 12.3.1.2 Dehalogenation of Tetrahalides
 12.3.2 Important Reactions
 12.3.2.1 Addition of Halogens
 12.3.2.2 Oxidation with KMnO4
LIST OF PRACTICALS

<table>
<thead>
<tr>
<th>Chapter 1:</th>
<th>Chemical Equilibrium</th>
<th>None</th>
<th>None</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2:</td>
<td>Acids, Bases and Salts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Identify sodium, calcium, strontium, barium, copper, potassium radicats by flame test.</td>
<td>platinum wire, watch glass, burner, matches</td>
<td>salt of each of sodium, calcium, strontium, barium, copper, potassium, concentrated HCl</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Standardize the given NaOH solution volumetrically.</td>
<td>pipette, burette, funnel, conical flask, beaker</td>
<td>standard solution of HCl, solution of NaOH, phenolphthalein</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Standardize the given HCl solution volumetrically.</td>
<td>pipette, burette, funnel, conical flask, beaker</td>
<td>standard solution of NaOH, solution of HCl, phenolphthalein</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Determine the exact molarity of the Na₂CO₃ solution volumetrically.</td>
<td>pipette, burette, funnel, conical flask, beaker</td>
<td>standard solution of HCl, solution of Na₂CO₃, methyl orange</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Determine the exact molarity of a solution of oxalic acid volumetrically.</td>
<td>pipette, burette, funnel, conical flask, beaker</td>
<td>standard solution of NaOH, solution of oxalic acid, phenolphthalein</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Demonstrate that some natural substances are weak acids.</td>
<td>dropper, knife, test tubes, 2 test tube racks, beaker, gas burner, wire gauze, matches, dropper, safety goggles</td>
<td>citrus fruits, pH paper</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Classify substances as acidic, basic or neutral</td>
<td>six 100-cm³ beakers, red and blue litmus papers, safety goggles</td>
<td>red and blue litmus paper, 0.1% bromthymol blue, 0.1m solutions of various acids (hydrochloric, nitric, sulphuric, and acetic acids), bases (sodium carbonate, hydroxides of sodium, potassium, calcium and magnesium) and neutral substances (methanol, ethanol, sodium chloride and water)</td>
<td></td>
</tr>
<tr>
<td>Chapter 3:</td>
<td>Organic Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Identify aldehydes using Fehling's test and Tollen's test.</td>
<td>test tubes, test tube holder, test tube rack, burner, water bath, matches, dropper, safety goggles</td>
<td>Fehling's solution, Tollen's reagent, glucose solution, distilled water</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Identify ketones using 2, 4- dinitrophenyl hydrazine test.</td>
<td>test tubes, test tube holder, test tube rack, burner, matches, dropper, safety goggles</td>
<td>fructose solution, 2,4-dinitrophenyl hydrazine solution, distilled water</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Identify carboxylic acids using sodium carbonate test.</td>
<td>test tubes, test tube holder, test tube rack, burner, matches, dropper, safety goggles</td>
<td>acetic acid solution, solid sodium carbonate, distilled water</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Identify phenol using Ferric Chloride test.</td>
<td>test tubes, test tube holder, test tube rack, burner, matches, dropper, safety goggles</td>
<td>phenol solution, freshly prepared ferric chloride solution, distilled water</td>
<td></td>
</tr>
<tr>
<td>Chapter 4:</td>
<td>Hydrocarbons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Identify saturated and unsaturated organic compounds by KMnO₄ test.</td>
<td>test tubes, test tube holder, test tube rack, dropper</td>
<td>cinnamic acid solution, KMnO₄ solution, distilled water</td>
<td></td>
</tr>
<tr>
<td>Chapter 5: Biochemistry</td>
<td>1. Demonstrate that sugar decomposes into elements or other compounds.</td>
<td>China dish, burner, tripod stand, wire gauze, matches, spatula, safety goggles</td>
<td>sugar</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Chapter 6: Atmosphere</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Chapter 7: Water</td>
<td>1. Demonstrate the softening of water by removal of calcium ions from hard water.</td>
<td>2 test tubes and stoppers, beaker</td>
<td>distilled water, small bar of soap, sodium sulphate solution, calcium sulphate solution and sodium bicarbonate solution</td>
<td></td>
</tr>
<tr>
<td>Chapter 8: Chemical Industries</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
SECTION - A

Time allowed: 20 minutes
Marks: 12

Note: Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 20 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Q.1 Insert the correct option i.e. A / B / C / D in the empty box opposite each part. Each part carries one mark.

 i. Ammonia is synthesized by Haber process according to the following equilibrium:

 \[\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) \]

 The unit of Kc for this reaction is:

 A. \(\text{mol}^2\text{dm}^{-6} \)
 B. \(\text{mol}^2\text{dm}^{-3} \)
 C. \(\text{mol}^2\text{dm}^{-4} \)
 D. \(\text{mol} \text{ dm}^{-3} \)

 ii. Which one of the following species is a Lewis acid?

 A. \(\text{NH}_3 \)
 B. \(\text{BH}_3 \)
 C. \(\text{PH}_3 \)
 D. \(\text{AlH}_4^- \)

 iii. Which of the following is an alcohol?

 A. \(\text{CH}_3\text{CH}_2\text{O}-\text{CH}_2\text{CH}_3 \)
 B. \(\text{CH}_3\text{CH}_2\text{COOH} \)
 C. \(\text{CH}_3\text{COCH}_3 \)
 D. \(\text{CH}_3\text{CH}_2\text{OH} \)

 iv. Dehydration means the removal of:

 A. Hydrogen
 B. Water
 C. Halogen
 D. Hydrogen halide

 v. How many amino acids are synthesized in our bodies?

 A. 10
 B. 15
 C. 20
 D. 25

 vi. Which gas has highest percentage in air?

 A. \(\text{O}_3 \)
 B. \(\text{O}_2 \)
 C. \(\text{N}_2 \)
 D. \(\text{CO}_2 \)

 vii. What is formed when \(\text{CO}_2 \) reacts with water?

 A. \(\text{H}_2\text{CO}_2 \)
 B. \(\text{H}_2\text{CO} \)
 C. \(\text{H}_2\text{CO}_3 \)
 D. \(\text{HCO}_3^- \)
viii. \(\text{CuFeS}_2 \) is an ore of metal:
A. Iron
B. Silicon
C. Sodium
D. Cooper

ix. Percentage of Nitrogen in Urea is:
A. 35
B. 21.2
C. 46.6
D. 80

x. The molecular formula of hexane is:
A. \(\text{CH}_4 \)
B. \(\text{C}_3\text{H}_8 \)
C. \(\text{C}_6\text{H}_{14} \)
D. \(\text{C}_4\text{H}_{10} \)

xi. Quick lime is produced by the decomposition lime in the lime Kiln according to the following equation:
\[\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g) \]
The reaction goes to completion because:
A. \(\text{CO}_2 \) is a gas
B. \(\text{CaO} \) is not dissociated
C. \(\text{CO}_2 \) escapes continuously
D. \(\text{CaCO}_3 \) is less stable than \(\text{CaO} \)

xii. In a solution of sodium hydroxide, the concentration of \(\text{OH}^- \) ions is \(1.0 \times 10^{-5}\text{M} \). The concentration of \(\text{H}^+ \) ions would be:
A. \(1.0 \times 10^{-5}\text{M} \)
B. \(1.0 \times 10^{-7}\text{M} \)
C. \(1.0 \times 10^{-9}\text{M} \)
D. \(1.0 \times 10^{-11}\text{M} \)
Q.2 Attempt any eleven parts from the following. The answer of each part should not exceed 4 to 5 lines.

(i) Define equilibrium state. How a dynamic equilibrium is established in a reversible chemical reaction.

(ii) What is key reaction of neutralization? It is an exothermic reaction. Explain with suitable reason.

(iii) Differentiate between saturated and unsaturated hydrocarbons.

(iv) Identify the products A and B in following reactions:

\[
\text{Propane} \xrightarrow{\text{Br}_2} A \xrightarrow{\text{alcohol}} B
\]

(v) Phosphoric acid is a tribasic acid. When reacted with sodium hydroxide solution, it forms series of salt by the partial or complete replacement of hydrogen atoms. Write names and chemical formula of the salts formed.

(vi) Define the following:

Catenation and Isomerism

(a) What is an amino acid. Name the functional group in an amino acid.

(b) Draw peptide linkage.

(viii) Complete the following reactions:

a. \(\text{SO}_2(g) + \text{O}_2(g) \rightarrow \)

b. \(\text{C}_2\text{H}_2(g) + \text{O}_2(g) \rightarrow \)

(c. \(\text{CO}_2(g) + \text{O}_2(g) \rightarrow \)

(ix) How acid rain is produced? How does it damage the beauty of our marble building and statues. Write chemical reaction of it.

(x) Wood, oil and electric fires required different techniques to put them out. How? Explain.

(xi) How the permanent hardness of water is removed by ion exchange resins?

(xii) Define fatty acids. Give two examples.
(xiii) How the process coagulation remove dirt particles and bacteria from water?
(xiv) Draw the structural formula of the following compounds:
 a. Pyridine b. Furan c. neo-pentane
(xv) Write any three uses of salts.

SECTION – C
(Marks: 20)

Note: Attempt any two questions.

(2×10=20)

Q.3
 a. State law of mass action. Derive the expression for equilibrium constant Kc for
 the following reaction:
 \[aA + 3B \xrightarrow{K_r} 4C + dD \]
 \[(1+3) \]
 b. Give the Lewis concept of acids and bases. Explain with the help of equations and
 suitable reasons that CaO is a Lewis base and BCl3 is a Lewis acid.
 \[(2+2+2) \]

Q.4
 (a) Define vitamins. What are types of vitamins and explain them.
 \[(1+1+4) \]
 (b) How will you prepare the following compounds starting from ethene:
 (1+4)
 i. Ethylene Glycol ii. 1,2-Dibromo ethane
 iii. CO2 iv. Ethane

Q.5
 (a) What has to be done to crude oil before it is used?
 (b) Develop flow sheet diagram of Solvay process.
 (c) What is meant by chlorination? How it purify the water?
 \[(3+4+3) \]
Federal Board SSC-II Examination
Chemistry Practical Model Question Paper

Time allowed: 2 hours

1. Identify the given compounds A & B with the help of chemical test. (2)

2. Determine the exact molarity of solution of Na₂CO₃ (OR) Standardize the given NaOH solution volumetrically. (4)

3. Note Book (2)

4. Viva Voce (2)

Note: No Procedure is required for minor experiment (only performance).